
OOI-CI Prototype Exchange-Space Implementation Report

Tony Garnock-Jones <tonyg@lshift.net>

5th January 2010

Abstract

Final summary of the prototype phase of the OOI-CI
RabbitMQ integration project, listing deliverables, de-
sign alternatives, and open issues.

1 Introduction and background

This document reports on the outcome of the RabbitMQ
part of the prototype OOI-CI AMQP messaging work.
It should be read as a companion to the following docu-
ments:

• The RabbitMQ OOI Statement of Work;

• The OOI-CI Prototype Exchange-Space API docu-
mentation; and

• General OOI-CI context documents on exchange-
spaces, exchange-points and federation.

There are three main deliverables: a preconfigured Rab-
bitMQ EC2 AMI; support for AMQP 0-9-1 in the Rab-
bitMQ server and selected client libraries; and a proto-
type implementation of exchange-spaces and exchange-
points, along with documentation and examples. Each
is briefly described below, along with a summary of its
status and pointers to further information.

2 RabbitMQ EC2 images

A collection of RabbitMQ AMIs is now available for
use. Links and instructions are available at http://www.
rabbitmq.com/ec2.html. Themaintainer of the AMIs is
Marek Majkowski (majek@lshift.net).

• Both 32- and 64-bit images are available.

• Images are based on Ubuntu 9.10.

• RabbitMQ v1.7.0 is preinstalled.

3 AMQP 0-9-1 interoperability

RabbitMQ’s support for the 0-9-1 variant of the AMQP
protocol is now largely complete. Three-way interoper-
ability between RabbitMQ, Qpid, and OpenAMQ has
been demonstrated through the use of standard off-
the-shelf examples shipped with each system, and also
through the 0-9-1 test suite developed by Michael Brid-
gen (mikeb@lshift.net). The status of our interoperabil-
ity testing is kept up-to-date at https://dev.rabbitmq.
com/wiki/Amqp091Interoperability.
Support for 0-9-1 is available on the amqp_0_9_1

branches of the various RabbitMQ mercurial reposito-
ries. The following shell commands check out and build
an 0-9-1-compatible broker, C client, and Java client:

hg clone http://hg.rabbitmq .com/rabbitmq -codegen
hg clone http://hg.rabbitmq .com/rabbitmq -server
hg clone http://hg.rabbitmq .com/rabbitmq -c

hg clone http://hg.rabbitmq .com/rabbitmq -java -client
(cd rabbitmq -codegen ; hg up amqp_0_9_1)

(cd rabbitmq -server; hg up amqp_0_9_1)
(cd rabbitmq -c; hg up amqp_0_9_1)
(cd rabbitmq -java -client; hg up amqp_0_9_1)

make -C rabbitmq -server
(cd rabbitmq -c; autoreconf -i; ./configure; make)

(cd rabbitmq -java -client; ant dist)

At this point, you can start the server,

make -C rabbitmq -server run

use the java client library in build/dist,

(cd rabbitmq -java -client/build/dist; \

sh runjava .sh com.rabbitmq .examples .SendString)

and run the C example programs:

./rabbitmq -c/examples /amqp_sendstring

To run the 0-9-1 test suite,

ant test -suite -prepare test -functional

The results of the suite will be available in
build/TEST-*.txt.

4 Exchange-space prototype imple-

mentation

The prototype takes the form of a new RabbitMQ plu-
gin, available via git on amoeba.ucsd.edu, and a set of

1



supporting modifications to the RabbitMQ server. In-
structions for building and running the prototype are
available in the file README.md in the plugin source code
checkout.

4.1 Design alternatives

Three potential alternative designs were considered:

Layered NIPCA-style networks. 1As part of the back-
ground research for this project, the idea of unify-
ing AMQP with NIPCA-style network operations
was discussed extensively. This is still an extremely
promising line of investigation, and should be re-
visited in future phases of the project because of its
formidable descriptive power.

Exchange-space extensions to the AMQP vocabulary.
An experimental new class, ExchangeSpace, was
considered. It would have permitted full control
over exchange-space functionality without being
restricted by limitations of the existing AMQP
vocabulary; however, it would have also required
changes to client libraries in order for them to use
the new functionality, which would have made
experimenting with the new features prohibitively
difficult.

New AMQP exchange types. This was the option cho-
sen in the end: it helped draw out the similarities
and differences between the existing AMQP vocab-
ulary and the vocabulary required for controlling
exchange-spaces, and worked seamlessly with ex-
isting AMQP client libraries. While it does not re-
sult in a perfect fit, leaving some exchange-space
features unaccessible to AMQP client libraries (but
controllable via out-of-band methods), it does per-
mit flexible and rapid experimentation with the
new functionality.

4.2 Retrieving and building the code

To retrieve the plugin,

git clone \
git@amoeba.ucsd.edu:exchange_space_prototype.git

The changes to the RabbitMQ server are available on
the branch named bug22019. For more information on
retrieving, building, configuring and running the sys-
tem, see the plugin’s README.md file.
Example programs using Pika2 are provided in the

examples directory of the plugin source code check-
out, but similar examples can be written for any AMQP

1Network IPC Architecture, NIPCA: a powerful network architec-
ture described in John Day’s book, Patterns in Network Architecture,
2008.

2A python AMQP client library. http://github.com/tonyg/pika

client library that can support the provision of custom
exchange-type names and exchange declaration argu-
ment tables; the prototype was specifically designed to
be compatible with unmodified existing AMQP client li-
braries. See the prototype API documentation for more
information.

4.3 Open issues and next steps

The experimental implementation, with its new
exchange-types and otherwise unmodified AMQP
vocabulary, is a stop-gap on the road to full integra-
tion between AMQP and NIPCA-style concepts. A
synthesis of the two systems seems likely to be able to
uniformly and flexibly describe and manipulate many
common configurations of networks small and large,
including several that are not amenable to description
in any manner within the bounds of today’s network
programming APIs.3 Many open questions in this area
remain; among others:

• What is the relationship between associations
(roughly analogous to connections) and subscrip-
tions?

• What is the relationship between associations and
individual messages?

• What is the relationship between name-binding, di-
rectory, and subscription?

• What is the relationship between AMQP’s ex-
changes and queues and NIPCA’s names and ad-
dresses?

• Where do applications and application instances fit
in AMQP? How do they relate to applications and
application instances in NIPCA?

In terms of the experimental implementation itself, one
interesting issue is that the existing AMQP 0-9-1 vocab-
ulary is not rich enough to describe all exchange-space
and exchange-point operations: in particular, it can nei-
ther describe options for managing buffers and transfer-
of-responsibility within the network nor express the dif-
ference between exchange-point deletion and exchange-
point unsubscription. If the current implementation is
to be taken forward, either an out-of-band control chan-
nel will need to be provided for controlling such things,
or the core AMQP vocabulary itself will have to be al-
tered, perhaps in a manner guided by future work on
the AMQP/NIPCA synthesis.

3"Whereof one cannot speak, thereof one must be silent." Firewalls, just
to pick one important example, are not represented in the BSD sockets
API.

2



The experimental implementation provides only the
barest rudiments of a system for management and mon-
itoring of exchange-spaces and exchange-points. Future
work will need to explore the options for improving the
management and monitoring situation.
Finally, federation is one of the areas being worked

on as part of the development of the AMQP 1.0 specifi-
cation. The design ideas explored in this project could
potentially contribute to the design of standardised fed-
eration for AMQP, especially in the area of managing
the scoping of addressing and naming.

5 Conclusion

All the project deliverables are complete, with respect to
the goals outlined in the Statement of Work and refined
by subsequent email and face-to-face communication.
OOI’s internal prototyping work can proceed, based on
the experimental exchange-space implementation pro-
vided, and clear lines of potential future investigation
exist.

3


